Temple University Tyler School of Art

DOUG BOSWELL
MECHANICAL OPTION
APRIL 16, 2008

Presentation Outline

- Project Overview
- Existing Mechanical Systems
- Proposed Redesign
- Electrical Considerations
- Mechanical Construction Cost
- Life Cycle Cost Analysis
- Conclusions

Project Overview

- Building Owner: Temple University
- Building Location: Philadelphia, PA
 - Campus moving from Elkins Park, PA to Main Campus
- Art Education
 - Building divided by Departments
- 234,000 SF
- \$75 Million
- Construction Complete January 2009

Tyler School of Art

oDesigned by Carlos Jimenez

oSchool Features 160,000 SF of Teaching Space

oBuilding Includes Studio, Galleries, Administration, and Workshops

oDepartments Include Painting, Metals, Printmaking, Sculpture, etc.

040% More SF than Elkins Park Campus

Existing Mechanical Conditions

- Campus Chiller/Boiler Plant
 - o 40,000 lbs/hr of HPS supplied at 240°F
- HPS Converted to LPS
 - LPS used for preheat coils, AHUs, and heat exchangers
- LPS Converted to Hot Water Heat through Heat Exchanger
 - Hot Water System serves terminal heating equipment
 - **X** Hot Water Supply: 180°F
 - × Hot Water Return: 160°F

Existing Mechanical Conditions

Served by 3 RTUs & 4 basement AHUs

- o 2 RTUs & 2 AHUs are VAV Reheat
- o 1 RTU & 2 AHUs are CAV Reheat
- o Units Range 35,000-62,000 CFM
- o CAVR units are 100% OA

Space	HVAC System
Administration & Office	Variable Air Volume Reheat (VAVR)
Classroom Spaces	Variable Air Volume Reheat (VAVR)
Conference & Presentation	Variable Air Volume Reheat (VAVR)
Workshop & Studio Areas	Constant Air Volume Reheat (CAVR)

VAV/CAV Advantages

- Low First Cost
- Low Maintenance
- Simple & Inexpensive Controls
- Flexibility

VAV/CAV Disadvantages

- High Energy Consumption
- Inadequate Airflow
- Single Box Serves Multiple Spaces
- Large Ductwork

Redesign Summary

- Replace VAV/CAV units with Dedicated Outdoor Air (DOAS) Units
- Parallel Sensible System: Chilled Beams
- Energy Consumption Improvement

Dedicated Outdoor Air System (DOAS)

- Separates Latent from Sensible Loads
- Energy Savings with Decreased Fan and Chilled Energy
- Paired with Parallel Sensible System
- Improved Indoor Air Quality and Thermal Comfort

Energy Recovery

- Included as Part of DOAS
- Advantages
 - Reduce Cooling/Heating Loads
 - Downsize Equipment/Ductwork
- Disadvantages
 - Increased First Cost
 - Fan Energy
 - Required Air Filtration

Chilled Beams

- Active Beams Mix Supply Air with Existing Air
- Passive Beams Use Natural Convection
 - Warm Air Rises While Cool Air Falls

Chilled Beams

Advantages

- Pump Energy instead of Fan Energy
- Mechanical System and Duct Reductions
- Higher Air Temperature Because Direct Cooling

Disadvantages

- Cost
- Condensation
- High Sensible Loads
- U.S. Availability

DOAS Ventilation Air Summary

		Square Feet	
	DOAS Supply Air	Served	CFM/FT ²
AHU-1/2	25,336	39,786	0.637
AHU-3/4	31,284	67,333	0.465
RTU-1	19,727	30,757	0.641
RTU-2	8,127	21,749	0.374
RTU-3	8,423	20,410	0.413
Total CFM	92,897		

	Total	Total %
	CFM	Reduction
Original		
Design	352,000	73
Redesign	92,897	

DOAS System Layout

	Total CFM	Areas Served
DOAS-1	22,213	RTU-2, RTU-3, AHU-3/4
DOAS-2	22,733	AHU-3/4
DOAS-3	25,336	AHU-1/2
DOAS-4	22,615	RTU-1, AHU-3/4

Chilled Beams Required

- Halton, Inc. Chilled Beams Used
- Heating/Cooling
- Wide Occupancy Ranges
- Handle High Sensible Loads

		Chilled Beams
Floor	MBH	Required
1st	930.2	233
2nd	1344.4	336
3rd	418.8	105
Basement	310.3	78
Total	3003.7	751

Halton CCE Active Chilled Beam

Annual Existing Energy Cost

Annual Operating Cost of \$500,428.00

		Annual Revised Cost	Total Cost (%)
N 25	Air System Fans	\$135,442.00	27.1
DESI	Cooling	\$76,924.00	15.4
AL [Heating	\$50,372.00	10.1
TYLER SCHOOL ORGINAL DESIGN	Pumps	\$26,110.00	5.2
%	Cooling Tower Fans	\$32,436.00	6.5
100	HVAC Sub-Total	\$321,285.00	64.2
SCH			
H H	Lights	\$107,486.00	21.5
	Electric Equipment	\$71,657.00	14.3
	Non-HVAC Total	\$179,143.00	35.8
	TOTAL	\$500,428.00	100

Annual Existing Energy Cost

			Total
		Annual	Cost
		Revised Cost	(%)
	Air System Fans	\$42,329.00	24
OOAS	Cooling	\$33,614.00	19.1
🎽	Heating	\$69,548.00	39.5
	Pumps	\$13,493.00	7.7
	Cooling Tower Fans	\$17,259.00	9.8
	TOTAL	\$176,243.00	100
	Air System Fans	\$19,591.00	12.2
	Cooling	\$23,469.00	14.7
	Heating	\$18,153.00	11.3
MS	Pumps	\$13,269.00	8.3
CHIILLED BEAMS	Cooling Tower Fans	\$12,408.00	7.7
33	HVAC Sub-Total	\$86,889.00	54.3
	Lights	\$43,941.00	27.4
)		620, 204, 00	10.2
	Electric Equipment	\$29,294.00	18.3
	Non-HVAC	\$73,235.00	45.7
	TOTAL	\$160.124.00	100

ANNUAL ENERGY COST				
Existing \$500,428.00				
Redesigned	\$336,367.00			

Annual Energy Cost Savings of \$164,061.00

Annual Energy Consumption

Existing System

Redesigned System

		Annual Energy		
		Consumption	\$/yr	
	HVAC			
_ ا	Electric (kWh)	3,764,578	\$271,240.00	
ORIGINAL	Natural Gas			
RIG	(Therm)	38,006	\$50,044.00	
0	Non HVAC			
	Electric (kWh)	2,485,585	\$179,144.00	
	TOTAL ELECTRIC	6,250,163	\$500,428.00	

AS		Annual Energy Consumption	\$/yr
DOAS	Electric (kWh)	2,213,175	\$161,739.00
	Natural Gas		
	(Therm)	47,034	\$14,504.00
	HVAC		
NS	Electric (kWh)	941,153	\$68,854.00
EAN	Natural Gas		
D B	(Therm)	13,270	\$18,035.00
CHILLED BEAMS	Non HVAC		
품	Electric (kWh)	997,188	\$73,235.00
	TOTAL ELECTRIC	1,938,341	\$142,089.00
	TOTAL COST		\$336,367.00

Annual Energy Consumption

• Electric Reduction of Approximately 33%

ANNUAL ENERGY CONSUMPTION					
Existing System Redesign					
Electric (kWh)	6,250,163	4,151,516			
Natural Gas (Therm)	38,006	60,304			

Electrical Considerations

									DECCRIPTI
	DDOTEC	TIVE D			FFFFF			DESCRIPTI	
	PROTEC	TIVE DE	I		FEEDER			ON	
	СВ					CONDUCTOR	GROUND	CONDUIT	
	FRAME	NO.	TRIP	NO.	WIRE	SIZE	SIZE	SIZE	
		POL	(AM			(AWG OR			
	(AMPS)	ES	PS)	SETS	QTY./SET	KCMIL)	PER SET	PER SET	SERVICE
	225	3	200	1	3	3/0	6	2	AHU-1
	225	3	200	1	3	3/0	6	2	AHU-2
KE	250	3	250	1	3	250	4	2 1/2	AHU-3
Σ	250	3	250	1	3	250	4	2 1/2	AHU-4
=	225	3	200	1	4	3/0	6	2	RTU-1
EQUIPMENT REMOVED	225	3	125	1	4	1	6	1 1/2	RTU-1
≧	225	3	200	1	3	3/0	6	2	RTU-2
8	100	3	100	1	3	1	8	1 1/2	RTU-2
"	225	3	125	1	3	1	6	1 1/2	RTU-3
	100	3	100	1	3	1	8	1 1/2	RTU-3
	50	3	45	1	3	10	8	1/2	DOAS-1
Ð	40	3	35	1	3	10	8	1/2	DOAS-2
	50	3	45	1	3	10	8	1/2	DOAS-2
}	40	3	35	1	3	10	8	1/2	DOAS-2
EQUIPMENT ADDED	50	3	45	1	3	10	8	1/2	DOAS-3
	40	3	35	1	3	10	8	1/2	DOAS-3
EQ	50	3	45	1	3	10	8	1/2	DOAS-4
	40	3	35	1	3	10	8	1/2	DOAS-4

EXISTING SYSTEM COST				
	\$1,792.95	CONDUCTOR		
	\$339.73	GROUND		
	\$4,610.40	CONDUIT		
\$6,743.08	TOTAL COST			
DOAS REDESIGN				
	\$228.16	CONDUCTOR		
	\$200.88	GROUND		
	\$10.76	CONDUIT		
\$439.80	TOTAL COST			
•				
\$6.303.28	trical Savings	Potential Flect		

Electrical Considerations

	Voltage Drop						
	CONDUCTOR SIZE	FT	Amp	Voltage Drop	VD	%	Less Than
SERVICE	(AWG OR KCMIL)	WIRE	S	Per 1000 Amp-Ft	L to L	VD	2%
DOAS-1	10	52	50	1.103	4.96	1.03	Yes
DOAS-1	10	52	40	1.103	3.97	0.83	Yes
DOAS-2	10	56	50	1.103	5.34	1.11	Yes
DOAS-2	10	56	40	1.103	4.27	0.89	Yes
DOAS-3	10	40	50	1.103	3.82	0.80	Yes
DOAS-3	10	40	40	1.103	3.05	0.64	Yes
DOAS-4	10	100	50	1.103	9.54	1.99	Yes
DOAS-4	10	100	40	1.103	7.63	1.59	Yes

NEC Suggests VD of 3% for Branch Circuits

Initial Cost Comparison

	Existing	
	System	DOAS Redesign
CAV AHUs (2)	\$136,000.00	
VAV AHUs (2)	\$42,100.00	
CAV RTU	\$39,300.00	
VAV RTU (2)	\$98,800.00	
VAVR Boxes	\$100,775.00	
Diffusers	\$65,856.00	
Duct	\$112,745.17	\$67,782.18
DOAS (4)		\$120,000.00
Chilled Beams		\$1,502,000.00
Electrical Totals	\$6,743.08	\$439.80
Initial Total		
Cost	\$602,319.25	\$1,690,221.98

First Cost Comparison

\$1,087,903

20 Year Life Cycle Cost

• Assume i = 0.06

	Existing System	DOAS Redesign
Initial Cost	\$602,319.00	\$1,690,221.00
Years	Annual Operating Cost	Annual Operating Cost
20	\$500,428.00	\$336,367.00
Net Present Worth	\$5,739,869.74	3,858,095.85
Total Cost	\$6,342,188.74	\$5,548,316.85

Total Potential 20 Year Savings	\$793,871.89
---------------------------------	--------------

Payback = 8.7 years

Conclusion

- DOAS w/ Chilled Beams is Beneficial and Recommended for the Tyler School of Art
- Considerations
 - DOAS Design Software
 - Early Design Coordination for Chilled Beams
 - Contractor Familiarity

